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a b s t r a c t 
Recent trends in the design of cyber-physical systems (CPS) are moving towards heterogeneous multi-core 
architectures with cloud support. In this paper, we propose an energy-aware scheme for virtual machine 
placement in cloud-supported CPS with Network-on-Chip (NoC) architecture. We formulate the energy- 
aware on-chip virtual machine placement problem as an optimization problem, and design a heuristic 
scheme based on ant-colony optimization. We address problems of slow convergence speed and easily 
falling into stagnation in ant-colony algorithm by employing pheromone diffusion model that makes the 
proposed scheme more efficient. Simulation results show that our scheme achieves much higher energy 
efficiency compared with previous schemes with different network sizes and traffic models. 

© 2016 Published by Elsevier B.V. 
1. Introduction 

Cyber-Physical Systems (CPS) are composed of services and ap- 
plications deployed across a range of communication topologies, 
computing platforms, and sensing and actuation devices. Since 
numerous applications can be deployed in CPS platforms, cloud 
computing has become a promising computing paradigm which 
can provide a good support for CPS platforms in terms of cost- 
efficiency, scalability, and safety [1] . In cloud-supported CPS, the 
sensors and actuators communicate with the cloud through the 
cybernet, whereas information processing, control decision mak- 
ing, and system virtualization are all done at the cloud using the 
high-performance multi-core servers. This ensures quick responses 
to physical dynamics, and effective and stable control of the phys- 
ical environment. In addition, applications in the CPS are inher- 
ently heterogeneous, real time, reactive and networked with hard 
deadlines [2] . Every virtual machine in an application is inter- 
dependent and has its own execution, arrival and time periods [3] . 
A key challenge for cloud-based CPS is to optimally execute differ- 
ent applications in the cloud. Server virtualization is an effective 
method in cloud computing that allows various applications being 
deployed more flexibly and feasibly in different locations around 
the world. Through virtualization technology, the physical machine 
(server or computer) can be logically divided into multiple virtual 
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execution environments, with each acting as a full-function system. 
This isolated execution environment is so called virtual machine 
(VM). Therefore, one single server can simultaneously run multiple 
applications on separated virtual machines that leverage physical 
resources of the server [4,5] . 

With the increase number of cores integrated in a single server, 
the interconnection among these cores can significantly affect the 
system performance. The ever-advancing integration technology 
with billions of transistors integrated on a single chip enables 
on-chip multiple microprocessors based commercial servers, e.g., 
80 cores in Intel Teraflops, 188 cores in Cisco/IBM SPP. Moreover, 
recent developments in Network-on-Chip (NoC), a technology of 
on-chip interconnection network, provide some efficient com- 
munication schemes for these multi-core servers. Compared 
with traditional bus architecture, NoC leverages the principle of 
interconnection network and packet switching to achieve low 
latency, high performance, and low power consumption [6] . For a 
high-performance server based on the multi-core processor, each 
virtual machine can be implemented on one single processor core, 
and the NoC architecture provides efficient communications for 
these virtual machines, e.g., data flows, cache coherence protocols. 
At present, the inter-core communication power consumption 
has already taken an important part of the total power budget 
owing to the long distance global on-chip communication and 
ultra-high bandwidth requirement (tens to hundreds of terabits 
per second) [7] . The cost of managing the power consumption 
and the associated cooling devices drives the need to design some 
application-level energy-efficient schemes and algorithms. Careless 
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on chip virtual machine placement, which leads to unreasonable 
traffic distribution and hotspots, may cause high communication 
energy consumption and deteriorate the communication perfor- 
mance. For example, placing two virtual machines with large 
volume communication requirement too far will lead to high 
power consumption and long communication delay. In this paper, 
we propose an energy-efficient on chip virtual machine placement 
algorithm in one single server to solve this challenging problem. 

The objective of this work is to design an energy-aware on chip 
virtual machine placement scheme that is capable of implementing 
multiple virtual machines on a multi-core server with high power 
efficiency and desirable performance. The main contributions of 
this paper include: 
• We propose an energy-aware on chip virtual machine place- 

ment scheme for cloud computing which sustains the strength 
of ant colony algorithm in accuracy and efficiency but offsets 
its weakness in slow convergence speed. By placing virtual ma- 
chines running the same application to closer cores on the 
multi-core system according to their traffic rates, the energy 
consumption and communication delay can be reduced signifi- 
cantly. 

• We formulate the on chip virtual machine placement prob- 
lem as a binary integer programming (BIP) problem that aims 
to minimize the power consumption for inter-virtual-machine 
communications. To address this problem, we propose an im- 
proved ant colony algorithm that employs the pheromone dif- 
fusion model to solve these intrinsic problems of slow conver- 
gence and search stagnation. We customize the ant colony al- 
gorithm according to the application property and the charac- 
ter of Network on Chip communication architecture to achieve 
global energy efficiency. 

• We carry out extensive simulations to evaluate the energy con- 
sumption of our proposed algorithm with both synthetic traffics 
and realistic data traces. Simulation results show that our algo- 
rithm can achieve better energy efficiency compared with some 
existing algorithms. 
The remainder of the paper is organized as follows. 

Section 2 reviews some related works. In Section 3 , we give 
a motivating example for the on chip virtual machine place- 
ment problem. Then the statement of the problem is described 
in Section 4 . We present the energy efficient virtual machine 
placement algorithm in Section 5 . Simulation results are shown in 
Sections 6 , and Section 7 concludes this paper. 
2. Related works 
2.1. Virtual machine placement 

Virtual machine placement has significant influence on cloud 
computing systems. For example, if two virtual machines with ap- 
plication dependency are non-optimally placed on two servers that 
locate on different racks or even different cities, the communi- 
cation delay and energy consumption may be unacceptable. Gen- 
erally, previous researches have focused on dynamic inter-server 
virtual machine migration and static server-level virtual machine 
placement [4,8] . Using these schemes, all the active virtual ma- 
chines are migrated or placed onto a small number of servers 
with respect to the performance requirements and resource con- 
straints, whereas the unused servers which have no active vir- 
tual machine can be shut down to save power. However, with the 
rapid development of high performance multi-core servers, tens 
of hundreds of virtual machines can be implemented on a single 
server. The on chip virtual machine placement which deals with 
the intra-server communications between the virtual machines has 
become an open issue that needs to be well addressed. Grot et al. 

[9] proposed the Kilo-NoC architecture which guarantees the ser- 
vice requirements of data flows by placing the virtual machines 
on a shared CMP (chip-level multiprocessor). Wang et al. [13] pro- 
posed a virtual machine placement algorithm for the heteroge- 
neous multi-core system that exploits the different properties of 
each core to optimize the overall system performance and energy 
efficiency. Hu et al. [10] presented a virtual machine scheduling 
model to solve the I/O performance bottleneck based on the multi- 
core dynamic partitioning. Especially, for multicore platforms us- 
ing CPS, Kanduri et al. explore the impact of application mapping 
on network contention and predictability [11] . All the current re- 
searches of on chip virtual machine placement for multi-core sys- 
tems mainly target on some specific architectures and applications. 
It still lacks some general mathematical formulations and opti- 
mal solutions for the on-chip virtual machine placement problem, 
which is extremely important for designing a high performance 
and scalable multi-core system for cloud-based CPS. 
2.2. Placement algorithms 

Virtual machine placement can be formulated as optimization 
problems with objectives to minimize communication delay or 
maximize throughput or energy efficiency. Some current existing 
inter-server virtual machine placement algorithms in data cen- 
ters use Linear Programming model [12,14] , Bin Packing algorithm 
[15] and Artificial Intelligent algorithm [4,16,17] . The basic ideas of 
these algorithms are described in the followings. 

The Linear Programming (LP) schemes assume that the per- 
formance goal is linearly related to the placement of virtual ma- 
chines. For example, Chaisiri et al. [14] proposed an algorithm 
which places virtual machines on different physical servers with 
the assumption that the minimal number of servers required and 
the resources in each server subject to a linear function. In [12] , 
the authors also designed some extension constraints for the lin- 
ear programming model, such as restricting the number of virtual 
machines in a single physical server, limiting the number of vir- 
tual machine migrations, etc. The main advantage of the Linear 
Programming based schemes is its simplicity. 

The Bin Packing schemes assume that the virtual machine 
placement can be formulated as a variant of the vector bin-packing 
problem and various heuristic solutions have been used to solve 
this problem. Zhang et al. [15] designed several heterogeneity- 
aware heuristic algorithms for virtual machines placement, which 
explores the heterogeneity of the requirements of virtual machines 
for different resources and utilizes the dominant resources (e.g. 
CPU, memory) as constraints to assist inter-server virtual machine 
placement. However, this kind of schemes has higher complexity 
because of the heuristic algorithms. 

Artificial Intelligent algorithm is derived from some natural 
activities and can be used to achieve an optimal virtual ma- 
chine placement. Xu and Fortes [16] proposed a two-level con- 
trol system that adopts a modified genetic algorithm with fuzzy 
multi-objective evaluation to deal with the problem of allocat- 
ing workloads to virtual machines and virtual machines to phys- 
ical servers. Ant colony algorithm has been applied to the field of 
multi-objective optimization for virtual machine placement. Gao 
et al. [4] formulated the problem of virtual machine placement 
as a multi-objective combinatorial optimization problem aiming to 
simultaneously optimize total resource wastage and power con- 
sumption. A modified version of the ant colony system algorithm is 
proposed to effectively deal with the potential large solution space 
for large-scale data centers. Similarly, Liu et al. [17] proposed an 
approach based on the ant colony optimization to solve the virtual 
machine placement problem so as to effectively use the physical 
resources and to reduce the number of running physical servers. 
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Fig. 1. An example of virtual machine placement on a multi-core server with 16 processor cores. (a) Four applications and traffic between virtual machines; (b) Order 
Placement; (c) FFD Placement; (d) Ant colony Placement. 

These schemes are accurate and efficient for inter-server vir- 
tual machine placement. However, as the application properties of 
intra-server communications between virtual machines are quite 
different (e.g. cache coherence protocols), and limited by chip 
hardware resources, they cannot simply be applied to on chip vir- 
tual machine placement. The main objective of this paper is to de- 
sign an efficient virtual machine placement algorithm in terms of 
high energy efficiency. 
3. An motivating example 

As shown in Fig. 1 , we have a multi-core server with 16 pro- 
cesser cores using a mesh architecture. Suppose each core can only 
host one virtual machine. Therefore, up to 16 virtual machines can 
be placed on this multi-core server. We assume that the system is 
currently hosting four parallel applications with each having sev- 
eral different tasks running on the virtual machines. The applica- 
tions are labeled from Application 1 to Application 4 using differ- 
ent colors and the virtual machines are labeled as V i in each ap- 
plication. It is assumed that there is no communication between 
different applications and the traffic demand between two virtual 
machines (MB/s) is shown in Fig. 1 (a). We can place one virtual 
machine on a processer core in any position of the chip. How- 
ever, different placement methods may lead to different energy 
consumption for data communication. We assume that the energy 
consumption of transmitting 1-bit data through each hop of router 
and link is k (pJ). In Fig. 1 (b), the virtual machines are placed obliv- 
iously in order. In Fig. 1 (c), the virtual machines are placed by us- 
ing a classical bin-packing algorithm that is so-called the First Fit 
Decreasing (FFD) scheme [15] . In Fig. 1 (d), the virtual machines are 
placed using our scheme which is based on ant-colony optimiza- 
tion. The energy consumptions of three placements are 210.78 k 
(mW), 249.51 k (mW) 148.55 k (mW), respectively. It can be seen 
that our scheme produces the lowest energy consumption com- 
pared with random scheme and FFD scheme. That is because our 
scheme is able to search the solution space more efficiently and 
globally. 
4. System model and problem formulation 

In this section, we first describe the models, and then give a 
detailed formulation of the virtual machine placement problem. 

4.1. Traffic model 
The traffic model defines the communication requirement be- 

tween any two virtual machines in the system. It is the input of 
the virtual machine placement problem. We define the traffic ma- 
trix W . The traffic demand between two virtual machines V i and V j 
is W ( V i , V j ), which is the average communication volume between 
two virtual machines in a time period. There are several ways to 
setup the traffic matrix. The most ordinary method is to use some 
theoretic models to approximate the traffic pattern, such Poisson 
distribution [18] , Normal distribution [19] , Self-similar distribution 
[20] , etc. We adopt this approach in simulations with synthetic 
traffic. Profiling is another approach to estimate the traffic among 
cores. In Section 6 , we use a trace-based network traffic model to 
test our algorithm. 
4.2. Energy model 

Energy consumption is directly related to the traffic in the sys- 
tem. For example, a packet transmit through a router may con- 
sume some energy for routing, buffering, and switching, etc. In our 
energy model, it includes the energy consumption of transferring 
data between routers and the energy consumption consumed by 
the transmission links between the routers and the routers. Ac- 
cording to [21] , the energy consumption of transmitting 1-bit data 
is calculated as follows: 
E bit = E rbit + E lbit (1) 
where E rbit and E lbit are the energy consumption of transferring 
data through one hop of router and the inter-router link, respec- 
tively. 
4.3. Problem statement 

We assume the physical server is a multi-core system with N 
processor cores connected using a NoC communication architec- 
ture. In the multi-core system, each processor core is composed 
of a micro-CPU and its dedicated L1/L2 cache, which has full ca- 
pacity for a virtual machine. We assume that the cores are con- 
nected with a 2D mesh topology because of its simplicity in terms 
of floorplan and scalability. 

The set of virtual machines to be placed is represented by 
V = { V 1 , V 2 , V 3 , . . . V m } and the set of processer cores is denoted by 
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C = { C 1 , C 2 , C 3 , . . . C n } . Assume that a virtual machine network is a 
dependency graph denoted by G ( V, W ), where V is the set of vir- 
tual machines. Both V i and V j are dependent with each other if 
any communication takes place between them. So we define a bi- 
nary decision variable X ik for placing virtual machine V i on the pro- 
cesser core C k , C k ∈ C , as follows: 
X ik = {1 i f V i is assigned to C k 

0 otherwise (2) 
We assume that each virtual machine can be only placed on one 
processor core and each processor core can only run one virtual 
machine each time. Therefore, the additional constraint condition 
must be satisfied: 
| C | ∑ 
k X ik = 1 , ∀ i, V i ∈ V (3) 

| V | ∑ 
i X ik ≤ 1 , ∀ k, C k ∈ C (4) 

Eq. 3 guarantees that each virtual machine can be located on at 
most one processer core. Eq. 4 means each core can host at most 
one virtual machine. Based on these definitions, the energy con- 
sumed by transmitting 1-bit data between virtual machine V i and 
V j placed on C k and C l is: 
E k,l 

bit = (Distance ( C k , C l ) + 1) × E rbit + Distance ( C k , C l ) × E lbit (5) 
where Distance ( C k , C l ) is the number of hops between two pro- 
cesser cores C k and C l . Therefore, the virtual machine placement 
problem can be formulated as the following optimization problem: 

min E = i = m, j= m ∑ 
i =1 , j=1 

k = n,l= n ∑ 
k =1 ,l=1 E k,l 

bit × W ( V i , V j ) × X ik × X jl 

Sub ject to : 
| C | ∑ 
k X ik = 1 , ∀ i, V i ∈ V 

| V | ∑ 
i X ik ≤ 1 , ∀ k, C k ∈ C 

(6) 

Since the number of processer cores is | C |, the number of place- 
ment schemes will be the factorial | C |! when | V | = | C| , which is an 
NP-hard problem, we propose an intelligent optimization algorithm 
to solve this problem according to the above optimization model. 
5. Heuristic solution based on ant colony algorithm 

Ant colony algorithm is one of the most efficient meta-heuristic 
algorithms, which is inspired by the observation of real ant 
colonies based on their collective foraging behavior [22] . Ants are 
social insects and live in colonies. Their behaviors are controlled 
by the goal of finding food. First, ants search for food surround- 
ing their nest in a random manner. A special substance called 
pheromone that is used to exchange path information among in- 
dividual ants is laid when ants are moving. Once an ant finds a 
food source, it will carry the food and leave certain quantity of 
pheromones on the ground during the return trip. The pheromone 
trails will guide other ants to the food source. Ants will return 
faster on the shortest path to the food. Thereby, this path will 
have a stronger pheromone concentration, thus being more attrac- 
tive for subsequent ants to follow it. Through this positive feed- 
back mechanism, the probability for these ants choosing the short- 
est path could be much higher. 

Pheromone trails start to evaporate after a certain period of 
time. And like the chemical leakage in the air, the pheromone dif- 
fusion [23] approximately subjects to Gaussian plume model [24] . 

However, in traditional ant colony algorithm, the pheromone ex- 
change among ants is insufficient and not in time. It causes slow 
convergence speed and easily falls into stagnation of the solution 
[23] . In this section, we propose an improved ant colony algorithm 
based on pheromone diffusion to solve the placement problem. 
The pseudo code of the proposed ant colony algorithm is given in 
Algorithm 1 . This algorithm works as follows. In the initialization 
phase, the parameters are initialized and all the pheromone trails 
are set to τ 0 . In each iteration we use the roulette wheel rule to 
choose a particular processer core as the next one to hold current 
virtual machine. This rule is based on the information of the cur- 
rent pheromone concentration on processer cores and the heuristic 
factor which guides the ants towards choosing the most promising 
processer cores. After all ants have constructed their solutions, a 
global update is performed with each solution of the current ob- 
jective value. 
Algorithm 1 VM placement 
Input: 

Set of virtual machine V and set of processer core C, traf- 
fic matrix W 

Output: 
VM placement solution 

1: /*Initialization*/ 
2: Set parameters value α, β , ρ , Q 
3: Calculate the heuristic information according to Eq. 8 
4: Initialize all the pheromone values be tween virtual machines 

to τ0 
5: /*Iteration*/ 
6: for each ant=1 to N(number of ants) do 
7: for each i=1 to | V | (number of virtual machines) do 
8: for each j=1 to | C| (number of processer cores) do 
9: Calculate the probability p i j according to Eq. 7 

10: end for 
11: Generate a random number q 
12: if q < p i j then 
13: Select the processer core to place the virtual machine 
14: end if 
15: end for 
16: end for 
17: Calculate the value of objective for every ant 
18: if S(local_solution) > S(global_solution) then 
19: /*local_solution means the best solution of this iteration*/ 
20: /*global_solution means the best solution until this iteration*/ 
21: Update the S(global s olution ) 
22: end if 
23: Update pheromone information τi j according to Eq. 9 
24: /*Iteration end*/ 
25: Return global best solution 
5.1. Constructing a solution 

Each ant represents a feasible solution of virtual machine place- 
ment. When virtual machine V i is placed on processer core C j , the 
state of ant k has been changed. That is so call the move of the 
ant, and every unavailable move is retained in a set Tabu k . More- 
over, the colony of ants will be re-constructed in the same way 
at each iteration. For each virtual machine V i , we select C j by us- 
ing roulette rule according to the probability p ij . In this work, we 
define the probability p ij that ant k chooses to assign V i to C j as 
follows: 
p i j = ( τi j (t)) α × ( ηi j (t)) β

∑ 
s / ∈ Tab u k ( τs j (t)) α × ( ηs j (t)) β ∀ i, V i ∈ V (7) 
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whereby, τ ij denotes the pheromone concentrated on the processer 
cores which is defined in Eq. 9 below, and ηij is the heuristic fac- 
tor defined in Eq. 8 . Eq. 7 shows that a candidate is chosen rela- 
tively to the transition probability which depends on two factors: a 
heuristic factor and a pheromone factor. Moreover, two parameters 
α and β are used in order to respectively determine the relative 
importance of the pheromone trail and the heuristic information. 
5.2. Definition of heuristic information 

Different from real ant, the artificial ant can make use of the 
heuristic information when they search for the optimal solution. 
This heuristic information ηij indicates the desirability of assigning 
V i to C j . Hence, the appropriate calculation method of the heuris- 
tic information may significantly affects the efficiency of the algo- 
rithm. Based on characteristics of NoC architecture, in this paper, 
we calculate heuristic information fixedly with the algorithm run- 
ning because this method is faster. For each processer core we de- 
fine the heuristic information as: 
ηi j = 1 

d (C j ) , ∀ i, V i ∈ V (8) 
where d ( C j ) is the average distance of C j to any other processer 
cores. Apparently, d ( C j ) has the inverse ratio with ηij . According to 
Eq. 7 , the larger ηij is, the more probability that C j can be cho- 
sen. Hence, the processer core with lower average distance is more 
likely to be selected. Thus, with the iteration performed, the traffic 
intensive virtual machines will have higher probability to place on 
these processer cores. 
5.3. Pheromone trail update 

Another crucial part of ant colony algorithm is the update of 
pheromone trails. In the initialization phase, initial pheromone 
level is calculated by τ0 = 1 / | C| . After all ants have constructed 
the solutions, pheromone trails on all pairs need to be updated 
in order to help guiding the algorithm towards the optimal so- 
lution. The pheromone trail value could either increase, as ants 
deposit pheromone, or decrease, due to pheromone evaporation. 
When updating pheromone trails, one has to decide on which of 
the constructed solutions to lay pheromones. In traditional ant 
colony algorithm, there are usually two strategies to update the 
pheromone trails. The first strategy is that each ant contributes to 
the trail update by using the global information or the local in- 
formation. The global information is the total objective function 
value of this ant in current iteration. Meanwhile, the local infor- 
mation is the partial objective function value of this ant in current 
iteration. For instance, Dorigo M [25] proposed three classical up- 
date model called Ant-Cycle model, Ant-Quantity model and Ant- 
Density model. The difference amongst three models is that only 
Ant-Cycle model could use the global information. 

The second strategy is only to use the information contained 
in the iteration-best or the best-so-far solutions to update the 
pheromone. The iteration-best solution is done after each solution 
has been constructed, and its purpose is to decay the pheromone 
intensity of the components of the solution just constructed. Thus, 
other component choices in the subsequent solutions can also be 
explored. Best-so-far solution has been finished after all solutions 
in a colony (an iteration) have been constructed and improved by 
local search. It aims at reflecting the discoveries of this iteration. 

Different from traditional methods, our algorithm adopts a 
comprehensive method of two strategies. The key reason to 
achieve this method is that the pheromone can not only evapo- 
rate but also diffuse in the real world. And the diffusion model 
approximately subjects to Gaussian plume model [24] . To truly re- 
flect the real state, our algorithm enhances the pheromone of the 

processer core whose total energy consumption is relatively small. 
Moreover, with the pheromone diffusion, the other processer cores 
that are not selected at this iteration will also obtain pheromone. 
Early stagnation of the search is most likely to be avoided by in- 
troducing this pheromone diffusion model. The pheromone update 
rule is defined as: 
τi j (t) = ρ × τi j (t − 1) + N ∑ 

k &τ k 
i j (9) 

where the constant ρ ∈ [0, 1] is the parameter that controls the 
pheromone persistence. &τ k 

i j represents the pheromone increment 
that the ant k leaves. To improve the convergence speed of the al- 
gorithm, we introduce pheromone diffusion model to simulate the 
behavior of ant colony more realistically. Thereby, &τ k 

i j is defined 
as: 

&τ k 
i j = 

⎧ 
⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎩ 

Q √ 
2 πE , X i j = 1 
Q √ 
2 πE exp {−D 2 (C i , C j )/ 2 E 2 }, 

X i j ̸ = 1 and D (C i , C j ) ≤ | C | / 2 , ∀ i ∈ m 
0 , otherwise 

(10) 

where Q means the impact factor of the pheromone. It is a con- 
stant which can influence the coverage speed in a certain degree. 
When the X i j = 1 , which means V i is placed to C j , the pheromone 
increment is the maximum. And then due to the pheromone diffu- 
sion, the pheromone concentration in the area of | C |/2 radius from 
the center of C j will increase by following the Gaussian plume 
model. Two purposes of this operation have been achieved, 1) to 
decay the pheromone intensity of the components of the solution 
just constructed and 2) to encourage exploration of other compo- 
nent choices in the subsequent solutions to be constructed. 
6. Performance evaluation 

With the increase of the scale of NoC architecture, it is neces- 
sary to gain a first insight into the performance of the algorithm 
on large-scale before implementing it in a real environment. For 
the limitation of facilities, in this section, we use some simula- 
tions to evaluate the proposed algorithm with respect to perfor- 
mance and computing efficiency. The performance of the proposed 
ant algorithm is compared with that of the random placement al- 
gorithm and FFD algorithm. All the algorithms are coded by us- 
ing C language and run on an Intel Pentium Dual-Core processor 
with 2.94 GHz CPU and 4 GB RAM. All the settings for various 
parameters of improved ant colony algorithm have a direct effect 
on the algorithm performance. Appropriate parameter values are 
determined on the basis of preliminary experiments [4,17,23] . The 
parameters of the ant colony algorithm are set to the following 
values, α = 1 , β = 2 , ρ = 0 . 8 , Q = 10 0 0 0 , and 10 0 ants are used 
in each iteration. The max iteration is set as 100, 150, 200 respec- 
tively with the increase of the scale of NoC. Every scenario is re- 
peated with 100 runs for each instance. 

Mesh topology is employed in the simulation which is a widely 
used in NoC architecture [26,27] . Different communication traffic 
models are tested in the simulation. Another important question 
is how to calculate the sum of traffic demands. Although several 
works on routing algorithms [28,29] have been proposed, we adopt 
XY-routing in this paper for simplicity. In scenario one and sce- 
nario two, we evaluate the performance with different network 
sizes that include 16 processer cores (4 × 4 mesh), 36 processer 
cores (6 × 6 mesh), 64 processer cores (8 × 8 mesh) respectively, 
and with different traffic demands of virtual machines and the in- 
terdependencies among them. The traffic demands of virtual ma- 
chines subject to the normal distribution N (0.2, 0.1), N (0.4, 0.1), 
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Table 1 
Execution time of ant colony placement. 

Traffic model Topology Variation Execution time(ms) 
Global 4 × 4 0 .2 18 .051 

0 .4 18 .055 
0 .6 18 .885 

Global 6 × 6 0 .2 115 .43 
0 .4 118 .55 
0 .6 119 .53 

Global 8 × 8 0 .2 516 .82 
0 .4 525 .53 
0 .6 528 .02 

Partioned 4 × 4 0 .2 15 .59 
0 .4 15 .83 
0 .6 17 .12 

Partitioned 6 × 6 0 .2 118 .05 
0 .4 118 .20 
0 .6 118 .56 

Partitioned 8 × 8 0 .2 564 .48 
0 .4 565 .41 
0 .6 566 .43 

N (0.6, 0.1) with the unit of MB/S [30] . In scenario three, we intro- 
duce the trace-based network traffic models which have been col- 
lected from execution of applications to show that our algorithm 
still has better performance for on-chip virtual machine placement 
[31] . In addition, computation time is also an essential metric to 
evaluate. Since the similarity of network scales, we only test the 
computation time in Scenario one which can prove the efficiency 
of our algorithm. 
6.1. Scenario one: performance comparisons with different traffic 
models 

In this scenario, we compare 1) global traffic model in which 
each virtual machine communicates with each other at a constant 
rate, 2) partitioned traffic model in which the virtual machines are 
divided into isolated partitions, and only virtual machines within 
the same partition will communicate with each other. The energy 
consumption of transmitting a bit of data through a router and a 
link is 4.171nJ and 0.449nJ, respectively according to [21] . The ob- 
jective value we calculated is used to show the differences, the 
smaller objective value indicates the better performance. Traffic 
demands of virtual machines meet the normal distribution func- 
tion with different parameters (mean and variance value) that 
mentioned above. Since all of the virtual machines have connec- 
tions with each other in global traffic model, the number of appli- 
cation can be seen as only one. Meanwhile, the number of appli- 
cations is generated randomly in partitioned traffic model, which 
the minimum number of applications is set to 2. In each case, 
the number of virtual machines equals to the number of processer 
cores. The time simulation results are depicted in Table 1 . 

Fig. 2 shows the comparison results, where X axis stands for the 
mean traffic from each virtual machine. For example, 0.2 means 
that communication traffic between virtual machines obeys the 
normal distribution with 0.2 as mean value, and 0.1 represents 
variance value. In the figure, each bar indicates that the objective 
values calculated by three algorithms. According to Fig. 2 (a) (c) (e), 
under the global traffic model, the objective function values pro- 
vided by improved ant colony placement are about average 3.2% 
and 1.9% smaller than those of the other two algorithms. In other 
words, if a chip is devoted to just one application with homoge- 
neous traffic rates among virtual machines, the objective values 
obtain few discrepancies among three algorithms. Since all virtual 
machines transfer traffic to each other, the location is not the main 
impact factor to objective values. In addition, with the network 
scale expansion, the improvements are less for the range of feasi- 

ble solution increasing. That causes the improved ant colony algo- 
rithm needs more iterations to search for the approximate optimal 
solution. Fig. 2 (b) (d) (f) compares the performance of three place- 
ment algorithms with different network scale under partitioned 
traffic model. We have three groups for each test. The results indi- 
cate the same trends as those under global traffic model, with the 
performance improvement potential being even more prominent. 
Ant colony algorithm can provide average 47% and 42% improve- 
ment than random placement and FFD placement. This can be at- 
tributed to that improved ant colony algorithm has much higher 
global searching ability. 

As it can be observed, computation time is required to search 
for the placement. The computation complexity is closely related 
to the scale of NoC, i.e., the number of nodes in the network. As 
expected, the computation complexity represented by the run time 
in Table 1 increases as the scale of NoC increases. And the max 
computation time is less than 1 second. This confirms the effi- 
ciency of the proposed algorithm even for large scale NoCs. 
6.2. Scenario two: performance comparisons with different number of 
the utilized cores 

In this scenario, we compare the performance of three algo- 
rithms with different numbers of the utilized cores [30] . The num- 
ber of the cores in the higher utilization is followed uniform distri- 
bution which the scale is from three quarters number of the cores 
to the whole number of the cores. And The number of the cores 
in the lower utilization will use half or one quarter number of 
the cores randomly. The traffic model is adopted partitioned traf- 
fic model. Similar to the scenario one, the objective value is used 
to show the differences. And The interdependencies among appli- 
cations are also varying randomly which the minimum number of 
applications is set to 2. 

Fig. 3 (a) (c) (e) shows the performance of three algorithms 
where all the processer cores are higher utilized and Fig. 3 (b) (d) 
(f) displays the performance of three algorithms are lower uti- 
lized. We can see that, 1) the performance of improved ant colony 
placement provides about average 66.27% and 47.53% improvement 
compared with the other two algorithms. Since our placement al- 
gorithm takes into account of the dependencies of applications or 
communication requiring frequency, it can greatly reduce the total 
energy consumption for the placements. In addition, the improved 
ant colony placement produces the lowest energy consumption be- 
cause it is able to search the solution space more efficiently and 
globally. Thus, it can find solutions with lower energy consumption 
compared with random and FFD. 2) The energy consumption of 
FFD is between those of the other two. The reason is that FFD can 
find local optimal solutions in iteration which may cause global so- 
lution degradation. 
6.3. Scenario three: performance comparisons with trace-based traffic 
model 

In this scenario, we compare the performance of three place- 
ment algorithms with trace-based network traffic model. The set 
of on-chip network traffic traces is collected from the PARSEC v2.1 
benchmark suite [32] . The PARSEC suite contains multiple input 
sets for each benchmark, and we collect traces for all the bench- 
marks that work with simulations up to 64 cores. The iteration in 
this scenario is 150. 

Fig. 4 plots Objective values of three algorithms under different 
application traffic models on 8 × 8 mesh architecture. It can be 
seen that the improved ant colony algorithm provides better per- 
formance than those of the other two algorithms. However, under 
traffic models swaptions and bodytrack, the iteration is set to 250 
in order to obtain the better performance of our algorithm than 
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Fig. 2. Objective value of three algorithms (global traffic model and partitioned traffic model with different traffic variance) (a) 4 × 4 mesh, global traffic model; (b) 4 ×
4 mesh, partitioned traffic model; (c) 6 × 6 mesh, global traffic model; (d) 6 × 6 mesh, partitioned traffic model; (e) 8 × 8 mesh, global traffic model; (f) 8 × 8 mesh, 
partitioned traffic model. 
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Fig. 3. Objective value of three algorithms (different number of the utilized cores under partitioned traffic model with different traffic variance) (a) 4 × 4 mesh, higher 
utilization; (b) 4 × 4 mesh, lower utilization; (c) 6 × 6 mesh, higher utilization; (d) 6 × 6 mesh, lower utilization; (e) 8 × 8 mesh, higher utilization; (f) 8 × 8 mesh, lower 
utilization. 
that of FFD algorithm. Analyzing the traffic matrices of these two 
application traffic models, it can be seen that there are some traf- 
fic rates which are much higher than the others in traffic matrices. 
This means that, by using FFD algorithm, these virtual machines 
with higher traffic rates will be placed first which can reduce the 

total traffic on chip so as to the energy consumption. While, for 
our improved ant colony algorithm, these special points in traffic 
matrices will cause more iterations to search for the approximate 
optimal solution. 
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Fig. 4. Objective value of three algorithms under different application traffic models. 
7. Conclusion 

This paper proposes an energy-aware on chip virtual ma- 
chine placement with NoC architecture for cloud-supported Cyber- 
Physical Systems. Our primary aim is to reduce the energy con- 
sumption that is generated by traffic communications among dif- 
ferent virtual machines. We formulate the virtual machine place- 
ment algorithm as an optimization problem and derive the de- 
tailed energy model. We design an improved ant colony algorithm 
based on the characteristic of NoC architecture, which efficiently 
improves the energy efficiency of virtual machine communication. 
Compared with traditional random placement and FFD placement 
schemes, the simulation results show that our algorithm performs 
better with different traffic models and network sizes. For the fu- 
ture work, we are planning to consider the multi-cores virtual ma- 
chines placement on chip. And it is more realistic and also very 
important to improve the algorithm after evaluating the system 
performance. 
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