
ARTICLE IN PRESS
JID: MICPRO [m5G; July 22, 2016;15:23]

Microprocessors and Microsystems 0 0 0 (2016) 1–11
Contents lists available at ScienceDirect

Microprocessors and Microsystems
journal homepage: www.elsevier.com/locate/micpro

Energy-Aware on-chip virtual machine placement for cloud-supported
cyber-physical systems
Xuanzhang Liu a , c , Huaxi Gu a , ∗, Haibo Zhang b , Feiyang Liu b , Yawen Chen b , Xiaoshan Yu a
a State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, China
b Department of Computer Science, University of Otago, Dunedin, New Zealand
c Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 050081, China
a r t i c l e i n f o
Article history:
Received 6 February 2016
Revised 15 June 2016
Accepted 15 July 2016
Available online xxx
Keywords:
Cyber-physical systems
Virtual machine placement
Network-on-Chip
Ant colony optimization

a b s t r a c t
Recent trends in the design of cyber-physical systems (CPS) are moving towards heterogeneous multi-core
architectures with cloud support. In this paper, we propose an energy-aware scheme for virtual machine
placement in cloud-supported CPS with Network-on-Chip (NoC) architecture. We formulate the energy-
aware on-chip virtual machine placement problem as an optimization problem, and design a heuristic
scheme based on ant-colony optimization. We address problems of slow convergence speed and easily
falling into stagnation in ant-colony algorithm by employing pheromone diffusion model that makes the
proposed scheme more efficient. Simulation results show that our scheme achieves much higher energy
efficiency compared with previous schemes with different network sizes and traffic models.

© 2016 Published by Elsevier B.V.
1. Introduction

Cyber-Physical Systems (CPS) are composed of services and ap-
plications deployed across a range of communication topologies,
computing platforms, and sensing and actuation devices. Since
numerous applications can be deployed in CPS platforms, cloud
computing has become a promising computing paradigm which
can provide a good support for CPS platforms in terms of cost-
efficiency, scalability, and safety [1] . In cloud-supported CPS, the
sensors and actuators communicate with the cloud through the
cybernet, whereas information processing, control decision mak-
ing, and system virtualization are all done at the cloud using the
high-performance multi-core servers. This ensures quick responses
to physical dynamics, and effective and stable control of the phys-
ical environment. In addition, applications in the CPS are inher-
ently heterogeneous, real time, reactive and networked with hard
deadlines [2] . Every virtual machine in an application is inter-
dependent and has its own execution, arrival and time periods [3] .
A key challenge for cloud-based CPS is to optimally execute differ-
ent applications in the cloud. Server virtualization is an effective
method in cloud computing that allows various applications being
deployed more flexibly and feasibly in different locations around
the world. Through virtualization technology, the physical machine
(server or computer) can be logically divided into multiple virtual

∗ Corresponding author.
E-mail address: hxgu@xidian.edu.cn (H. Gu).

execution environments, with each acting as a full-function system.
This isolated execution environment is so called virtual machine
(VM). Therefore, one single server can simultaneously run multiple
applications on separated virtual machines that leverage physical
resources of the server [4,5] .

With the increase number of cores integrated in a single server,
the interconnection among these cores can significantly affect the
system performance. The ever-advancing integration technology
with billions of transistors integrated on a single chip enables
on-chip multiple microprocessors based commercial servers, e.g.,
80 cores in Intel Teraflops, 188 cores in Cisco/IBM SPP. Moreover,
recent developments in Network-on-Chip (NoC), a technology of
on-chip interconnection network, provide some efficient com-
munication schemes for these multi-core servers. Compared
with traditional bus architecture, NoC leverages the principle of
interconnection network and packet switching to achieve low
latency, high performance, and low power consumption [6] . For a
high-performance server based on the multi-core processor, each
virtual machine can be implemented on one single processor core,
and the NoC architecture provides efficient communications for
these virtual machines, e.g., data flows, cache coherence protocols.
At present, the inter-core communication power consumption
has already taken an important part of the total power budget
owing to the long distance global on-chip communication and
ultra-high bandwidth requirement (tens to hundreds of terabits
per second) [7] . The cost of managing the power consumption
and the associated cooling devices drives the need to design some
application-level energy-efficient schemes and algorithms. Careless

http://dx.doi.org/10.1016/j.micpro.2016.07.013
0141-9331/© 2016 Published by Elsevier B.V.
Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
mailto:hxgu@xidian.edu.cn
http://dx.doi.org/10.1016/j.micpro.2016.07.013
http://dx.doi.org/10.1016/j.micpro.2016.07.013

2 X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]
on chip virtual machine placement, which leads to unreasonable
traffic distribution and hotspots, may cause high communication
energy consumption and deteriorate the communication perfor-
mance. For example, placing two virtual machines with large
volume communication requirement too far will lead to high
power consumption and long communication delay. In this paper,
we propose an energy-efficient on chip virtual machine placement
algorithm in one single server to solve this challenging problem.

The objective of this work is to design an energy-aware on chip
virtual machine placement scheme that is capable of implementing
multiple virtual machines on a multi-core server with high power
efficiency and desirable performance. The main contributions of
this paper include:
• We propose an energy-aware on chip virtual machine place-

ment scheme for cloud computing which sustains the strength
of ant colony algorithm in accuracy and efficiency but offsets
its weakness in slow convergence speed. By placing virtual ma-
chines running the same application to closer cores on the
multi-core system according to their traffic rates, the energy
consumption and communication delay can be reduced signifi-
cantly.

• We formulate the on chip virtual machine placement prob-
lem as a binary integer programming (BIP) problem that aims
to minimize the power consumption for inter-virtual-machine
communications. To address this problem, we propose an im-
proved ant colony algorithm that employs the pheromone dif-
fusion model to solve these intrinsic problems of slow conver-
gence and search stagnation. We customize the ant colony al-
gorithm according to the application property and the charac-
ter of Network on Chip communication architecture to achieve
global energy efficiency.

• We carry out extensive simulations to evaluate the energy con-
sumption of our proposed algorithm with both synthetic traffics
and realistic data traces. Simulation results show that our algo-
rithm can achieve better energy efficiency compared with some
existing algorithms.
The remainder of the paper is organized as follows.

Section 2 reviews some related works. In Section 3 , we give
a motivating example for the on chip virtual machine place-
ment problem. Then the statement of the problem is described
in Section 4 . We present the energy efficient virtual machine
placement algorithm in Section 5 . Simulation results are shown in
Sections 6 , and Section 7 concludes this paper.
2. Related works
2.1. Virtual machine placement

Virtual machine placement has significant influence on cloud
computing systems. For example, if two virtual machines with ap-
plication dependency are non-optimally placed on two servers that
locate on different racks or even different cities, the communi-
cation delay and energy consumption may be unacceptable. Gen-
erally, previous researches have focused on dynamic inter-server
virtual machine migration and static server-level virtual machine
placement [4,8] . Using these schemes, all the active virtual ma-
chines are migrated or placed onto a small number of servers
with respect to the performance requirements and resource con-
straints, whereas the unused servers which have no active vir-
tual machine can be shut down to save power. However, with the
rapid development of high performance multi-core servers, tens
of hundreds of virtual machines can be implemented on a single
server. The on chip virtual machine placement which deals with
the intra-server communications between the virtual machines has
become an open issue that needs to be well addressed. Grot et al.

[9] proposed the Kilo-NoC architecture which guarantees the ser-
vice requirements of data flows by placing the virtual machines
on a shared CMP (chip-level multiprocessor). Wang et al. [13] pro-
posed a virtual machine placement algorithm for the heteroge-
neous multi-core system that exploits the different properties of
each core to optimize the overall system performance and energy
efficiency. Hu et al. [10] presented a virtual machine scheduling
model to solve the I/O performance bottleneck based on the multi-
core dynamic partitioning. Especially, for multicore platforms us-
ing CPS, Kanduri et al. explore the impact of application mapping
on network contention and predictability [11] . All the current re-
searches of on chip virtual machine placement for multi-core sys-
tems mainly target on some specific architectures and applications.
It still lacks some general mathematical formulations and opti-
mal solutions for the on-chip virtual machine placement problem,
which is extremely important for designing a high performance
and scalable multi-core system for cloud-based CPS.
2.2. Placement algorithms

Virtual machine placement can be formulated as optimization
problems with objectives to minimize communication delay or
maximize throughput or energy efficiency. Some current existing
inter-server virtual machine placement algorithms in data cen-
ters use Linear Programming model [12,14] , Bin Packing algorithm
[15] and Artificial Intelligent algorithm [4,16,17] . The basic ideas of
these algorithms are described in the followings.

The Linear Programming (LP) schemes assume that the per-
formance goal is linearly related to the placement of virtual ma-
chines. For example, Chaisiri et al. [14] proposed an algorithm
which places virtual machines on different physical servers with
the assumption that the minimal number of servers required and
the resources in each server subject to a linear function. In [12] ,
the authors also designed some extension constraints for the lin-
ear programming model, such as restricting the number of virtual
machines in a single physical server, limiting the number of vir-
tual machine migrations, etc. The main advantage of the Linear
Programming based schemes is its simplicity.

The Bin Packing schemes assume that the virtual machine
placement can be formulated as a variant of the vector bin-packing
problem and various heuristic solutions have been used to solve
this problem. Zhang et al. [15] designed several heterogeneity-
aware heuristic algorithms for virtual machines placement, which
explores the heterogeneity of the requirements of virtual machines
for different resources and utilizes the dominant resources (e.g.
CPU, memory) as constraints to assist inter-server virtual machine
placement. However, this kind of schemes has higher complexity
because of the heuristic algorithms.

Artificial Intelligent algorithm is derived from some natural
activities and can be used to achieve an optimal virtual ma-
chine placement. Xu and Fortes [16] proposed a two-level con-
trol system that adopts a modified genetic algorithm with fuzzy
multi-objective evaluation to deal with the problem of allocat-
ing workloads to virtual machines and virtual machines to phys-
ical servers. Ant colony algorithm has been applied to the field of
multi-objective optimization for virtual machine placement. Gao
et al. [4] formulated the problem of virtual machine placement
as a multi-objective combinatorial optimization problem aiming to
simultaneously optimize total resource wastage and power con-
sumption. A modified version of the ant colony system algorithm is
proposed to effectively deal with the potential large solution space
for large-scale data centers. Similarly, Liu et al. [17] proposed an
approach based on the ant colony optimization to solve the virtual
machine placement problem so as to effectively use the physical
resources and to reduce the number of running physical servers.

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013

X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11 3
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]

V4

Application 4

V3
V2

V1362 27

35
7

49
V5

Application 2

V3

V2
V116 157

16
16

16 16
V4V3

Application 1

V2

V170 362
310 310

30
0

500 V4

Application 3

V3
V2

V1

(a)

(b)

V3 V1 V4

V2V2V1V3

V2 V4 V1 V5

V3V3V1V4

V2

(c)

router

V3 V1

V4V2V5V1

V3 V1 V2 V2

V3V1V2V4

V4

(d)

V3

coreL1C CPUL1D

L2

link

V2 V3 V1

V5V4V3V2

V1 V2 V3 V4

V4V3V2V1

V1

Fig. 1. An example of virtual machine placement on a multi-core server with 16 processor cores. (a) Four applications and traffic between virtual machines; (b) Order
Placement; (c) FFD Placement; (d) Ant colony Placement.

These schemes are accurate and efficient for inter-server vir-
tual machine placement. However, as the application properties of
intra-server communications between virtual machines are quite
different (e.g. cache coherence protocols), and limited by chip
hardware resources, they cannot simply be applied to on chip vir-
tual machine placement. The main objective of this paper is to de-
sign an efficient virtual machine placement algorithm in terms of
high energy efficiency.
3. An motivating example

As shown in Fig. 1 , we have a multi-core server with 16 pro-
cesser cores using a mesh architecture. Suppose each core can only
host one virtual machine. Therefore, up to 16 virtual machines can
be placed on this multi-core server. We assume that the system is
currently hosting four parallel applications with each having sev-
eral different tasks running on the virtual machines. The applica-
tions are labeled from Application 1 to Application 4 using differ-
ent colors and the virtual machines are labeled as V i in each ap-
plication. It is assumed that there is no communication between
different applications and the traffic demand between two virtual
machines (MB/s) is shown in Fig. 1 (a). We can place one virtual
machine on a processer core in any position of the chip. How-
ever, different placement methods may lead to different energy
consumption for data communication. We assume that the energy
consumption of transmitting 1-bit data through each hop of router
and link is k (pJ). In Fig. 1 (b), the virtual machines are placed obliv-
iously in order. In Fig. 1 (c), the virtual machines are placed by us-
ing a classical bin-packing algorithm that is so-called the First Fit
Decreasing (FFD) scheme [15] . In Fig. 1 (d), the virtual machines are
placed using our scheme which is based on ant-colony optimiza-
tion. The energy consumptions of three placements are 210.78 k
(mW), 249.51 k (mW) 148.55 k (mW), respectively. It can be seen
that our scheme produces the lowest energy consumption com-
pared with random scheme and FFD scheme. That is because our
scheme is able to search the solution space more efficiently and
globally.
4. System model and problem formulation

In this section, we first describe the models, and then give a
detailed formulation of the virtual machine placement problem.

4.1. Traffic model
The traffic model defines the communication requirement be-

tween any two virtual machines in the system. It is the input of
the virtual machine placement problem. We define the traffic ma-
trix W . The traffic demand between two virtual machines V i and V j
is W (V i , V j), which is the average communication volume between
two virtual machines in a time period. There are several ways to
setup the traffic matrix. The most ordinary method is to use some
theoretic models to approximate the traffic pattern, such Poisson
distribution [18] , Normal distribution [19] , Self-similar distribution
[20] , etc. We adopt this approach in simulations with synthetic
traffic. Profiling is another approach to estimate the traffic among
cores. In Section 6 , we use a trace-based network traffic model to
test our algorithm.
4.2. Energy model

Energy consumption is directly related to the traffic in the sys-
tem. For example, a packet transmit through a router may con-
sume some energy for routing, buffering, and switching, etc. In our
energy model, it includes the energy consumption of transferring
data between routers and the energy consumption consumed by
the transmission links between the routers and the routers. Ac-
cording to [21] , the energy consumption of transmitting 1-bit data
is calculated as follows:
E bit = E rbit + E lbit (1)
where E rbit and E lbit are the energy consumption of transferring
data through one hop of router and the inter-router link, respec-
tively.
4.3. Problem statement

We assume the physical server is a multi-core system with N
processor cores connected using a NoC communication architec-
ture. In the multi-core system, each processor core is composed
of a micro-CPU and its dedicated L1/L2 cache, which has full ca-
pacity for a virtual machine. We assume that the cores are con-
nected with a 2D mesh topology because of its simplicity in terms
of floorplan and scalability.

The set of virtual machines to be placed is represented by
V = { V 1 , V 2 , V 3 , . . . V m } and the set of processer cores is denoted by

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013

4 X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]
C = { C 1 , C 2 , C 3 , . . . C n } . Assume that a virtual machine network is a
dependency graph denoted by G (V, W), where V is the set of vir-
tual machines. Both V i and V j are dependent with each other if
any communication takes place between them. So we define a bi-
nary decision variable X ik for placing virtual machine V i on the pro-
cesser core C k , C k ∈ C , as follows:
X ik = {1 i f V i is assigned to C k

0 otherwise (2)
We assume that each virtual machine can be only placed on one
processor core and each processor core can only run one virtual
machine each time. Therefore, the additional constraint condition
must be satisfied:
| C | ∑
k X ik = 1 , ∀ i, V i ∈ V (3)

| V | ∑
i X ik ≤ 1 , ∀ k, C k ∈ C (4)

Eq. 3 guarantees that each virtual machine can be located on at
most one processer core. Eq. 4 means each core can host at most
one virtual machine. Based on these definitions, the energy con-
sumed by transmitting 1-bit data between virtual machine V i and
V j placed on C k and C l is:
E k,l

bit = (Distance (C k , C l) + 1) × E rbit + Distance (C k , C l) × E lbit (5)
where Distance (C k , C l) is the number of hops between two pro-
cesser cores C k and C l . Therefore, the virtual machine placement
problem can be formulated as the following optimization problem:

min E = i = m, j= m ∑
i =1 , j=1

k = n,l= n ∑
k =1 ,l=1 E k,l

bit × W (V i , V j) × X ik × X jl

Sub ject to :
| C | ∑
k X ik = 1 , ∀ i, V i ∈ V

| V | ∑
i X ik ≤ 1 , ∀ k, C k ∈ C

(6)

Since the number of processer cores is | C |, the number of place-
ment schemes will be the factorial | C |! when | V | = | C| , which is an
NP-hard problem, we propose an intelligent optimization algorithm
to solve this problem according to the above optimization model.
5. Heuristic solution based on ant colony algorithm

Ant colony algorithm is one of the most efficient meta-heuristic
algorithms, which is inspired by the observation of real ant
colonies based on their collective foraging behavior [22] . Ants are
social insects and live in colonies. Their behaviors are controlled
by the goal of finding food. First, ants search for food surround-
ing their nest in a random manner. A special substance called
pheromone that is used to exchange path information among in-
dividual ants is laid when ants are moving. Once an ant finds a
food source, it will carry the food and leave certain quantity of
pheromones on the ground during the return trip. The pheromone
trails will guide other ants to the food source. Ants will return
faster on the shortest path to the food. Thereby, this path will
have a stronger pheromone concentration, thus being more attrac-
tive for subsequent ants to follow it. Through this positive feed-
back mechanism, the probability for these ants choosing the short-
est path could be much higher.

Pheromone trails start to evaporate after a certain period of
time. And like the chemical leakage in the air, the pheromone dif-
fusion [23] approximately subjects to Gaussian plume model [24] .

However, in traditional ant colony algorithm, the pheromone ex-
change among ants is insufficient and not in time. It causes slow
convergence speed and easily falls into stagnation of the solution
[23] . In this section, we propose an improved ant colony algorithm
based on pheromone diffusion to solve the placement problem.
The pseudo code of the proposed ant colony algorithm is given in
Algorithm 1 . This algorithm works as follows. In the initialization
phase, the parameters are initialized and all the pheromone trails
are set to τ 0 . In each iteration we use the roulette wheel rule to
choose a particular processer core as the next one to hold current
virtual machine. This rule is based on the information of the cur-
rent pheromone concentration on processer cores and the heuristic
factor which guides the ants towards choosing the most promising
processer cores. After all ants have constructed their solutions, a
global update is performed with each solution of the current ob-
jective value.
Algorithm 1 VM placement
Input:

Set of virtual machine V and set of processer core C, traf-
fic matrix W

Output:
VM placement solution

1: /*Initialization*/
2: Set parameters value α, β , ρ , Q
3: Calculate the heuristic information according to Eq. 8
4: Initialize all the pheromone values be tween virtual machines

to τ0
5: /*Iteration*/
6: for each ant=1 to N(number of ants) do
7: for each i=1 to | V | (number of virtual machines) do
8: for each j=1 to | C| (number of processer cores) do
9: Calculate the probability p i j according to Eq. 7

10: end for
11: Generate a random number q
12: if q < p i j then
13: Select the processer core to place the virtual machine
14: end if
15: end for
16: end for
17: Calculate the value of objective for every ant
18: if S(local_solution) > S(global_solution) then
19: /*local_solution means the best solution of this iteration*/
20: /*global_solution means the best solution until this iteration*/
21: Update the S(global s olution)
22: end if
23: Update pheromone information τi j according to Eq. 9
24: /*Iteration end*/
25: Return global best solution
5.1. Constructing a solution

Each ant represents a feasible solution of virtual machine place-
ment. When virtual machine V i is placed on processer core C j , the
state of ant k has been changed. That is so call the move of the
ant, and every unavailable move is retained in a set Tabu k . More-
over, the colony of ants will be re-constructed in the same way
at each iteration. For each virtual machine V i , we select C j by us-
ing roulette rule according to the probability p ij . In this work, we
define the probability p ij that ant k chooses to assign V i to C j as
follows:
p i j = (τi j (t)) α × (ηi j (t)) β

∑
s / ∈ Tab u k (τs j (t)) α × (ηs j (t)) β ∀ i, V i ∈ V (7)

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013

X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11 5
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]
whereby, τ ij denotes the pheromone concentrated on the processer
cores which is defined in Eq. 9 below, and ηij is the heuristic fac-
tor defined in Eq. 8 . Eq. 7 shows that a candidate is chosen rela-
tively to the transition probability which depends on two factors: a
heuristic factor and a pheromone factor. Moreover, two parameters
α and β are used in order to respectively determine the relative
importance of the pheromone trail and the heuristic information.
5.2. Definition of heuristic information

Different from real ant, the artificial ant can make use of the
heuristic information when they search for the optimal solution.
This heuristic information ηij indicates the desirability of assigning
V i to C j . Hence, the appropriate calculation method of the heuris-
tic information may significantly affects the efficiency of the algo-
rithm. Based on characteristics of NoC architecture, in this paper,
we calculate heuristic information fixedly with the algorithm run-
ning because this method is faster. For each processer core we de-
fine the heuristic information as:
ηi j = 1

d (C j) , ∀ i, V i ∈ V (8)
where d (C j) is the average distance of C j to any other processer
cores. Apparently, d (C j) has the inverse ratio with ηij . According to
Eq. 7 , the larger ηij is, the more probability that C j can be cho-
sen. Hence, the processer core with lower average distance is more
likely to be selected. Thus, with the iteration performed, the traffic
intensive virtual machines will have higher probability to place on
these processer cores.
5.3. Pheromone trail update

Another crucial part of ant colony algorithm is the update of
pheromone trails. In the initialization phase, initial pheromone
level is calculated by τ0 = 1 / | C| . After all ants have constructed
the solutions, pheromone trails on all pairs need to be updated
in order to help guiding the algorithm towards the optimal so-
lution. The pheromone trail value could either increase, as ants
deposit pheromone, or decrease, due to pheromone evaporation.
When updating pheromone trails, one has to decide on which of
the constructed solutions to lay pheromones. In traditional ant
colony algorithm, there are usually two strategies to update the
pheromone trails. The first strategy is that each ant contributes to
the trail update by using the global information or the local in-
formation. The global information is the total objective function
value of this ant in current iteration. Meanwhile, the local infor-
mation is the partial objective function value of this ant in current
iteration. For instance, Dorigo M [25] proposed three classical up-
date model called Ant-Cycle model, Ant-Quantity model and Ant-
Density model. The difference amongst three models is that only
Ant-Cycle model could use the global information.

The second strategy is only to use the information contained
in the iteration-best or the best-so-far solutions to update the
pheromone. The iteration-best solution is done after each solution
has been constructed, and its purpose is to decay the pheromone
intensity of the components of the solution just constructed. Thus,
other component choices in the subsequent solutions can also be
explored. Best-so-far solution has been finished after all solutions
in a colony (an iteration) have been constructed and improved by
local search. It aims at reflecting the discoveries of this iteration.

Different from traditional methods, our algorithm adopts a
comprehensive method of two strategies. The key reason to
achieve this method is that the pheromone can not only evapo-
rate but also diffuse in the real world. And the diffusion model
approximately subjects to Gaussian plume model [24] . To truly re-
flect the real state, our algorithm enhances the pheromone of the

processer core whose total energy consumption is relatively small.
Moreover, with the pheromone diffusion, the other processer cores
that are not selected at this iteration will also obtain pheromone.
Early stagnation of the search is most likely to be avoided by in-
troducing this pheromone diffusion model. The pheromone update
rule is defined as:
τi j (t) = ρ × τi j (t − 1) + N ∑

k &τ k
i j (9)

where the constant ρ ∈ [0, 1] is the parameter that controls the
pheromone persistence. &τ k

i j represents the pheromone increment
that the ant k leaves. To improve the convergence speed of the al-
gorithm, we introduce pheromone diffusion model to simulate the
behavior of ant colony more realistically. Thereby, &τ k

i j is defined
as:

&τ k
i j =

⎧
⎪ ⎪ ⎪ ⎪ ⎨
⎪ ⎪ ⎪ ⎪ ⎩

Q √
2 πE , X i j = 1
Q √
2 πE exp {−D 2 (C i , C j)/ 2 E 2 },

X i j ̸ = 1 and D (C i , C j) ≤ | C | / 2 , ∀ i ∈ m
0 , otherwise

(10)

where Q means the impact factor of the pheromone. It is a con-
stant which can influence the coverage speed in a certain degree.
When the X i j = 1 , which means V i is placed to C j , the pheromone
increment is the maximum. And then due to the pheromone diffu-
sion, the pheromone concentration in the area of | C |/2 radius from
the center of C j will increase by following the Gaussian plume
model. Two purposes of this operation have been achieved, 1) to
decay the pheromone intensity of the components of the solution
just constructed and 2) to encourage exploration of other compo-
nent choices in the subsequent solutions to be constructed.
6. Performance evaluation

With the increase of the scale of NoC architecture, it is neces-
sary to gain a first insight into the performance of the algorithm
on large-scale before implementing it in a real environment. For
the limitation of facilities, in this section, we use some simula-
tions to evaluate the proposed algorithm with respect to perfor-
mance and computing efficiency. The performance of the proposed
ant algorithm is compared with that of the random placement al-
gorithm and FFD algorithm. All the algorithms are coded by us-
ing C language and run on an Intel Pentium Dual-Core processor
with 2.94 GHz CPU and 4 GB RAM. All the settings for various
parameters of improved ant colony algorithm have a direct effect
on the algorithm performance. Appropriate parameter values are
determined on the basis of preliminary experiments [4,17,23] . The
parameters of the ant colony algorithm are set to the following
values, α = 1 , β = 2 , ρ = 0 . 8 , Q = 10 0 0 0 , and 10 0 ants are used
in each iteration. The max iteration is set as 100, 150, 200 respec-
tively with the increase of the scale of NoC. Every scenario is re-
peated with 100 runs for each instance.

Mesh topology is employed in the simulation which is a widely
used in NoC architecture [26,27] . Different communication traffic
models are tested in the simulation. Another important question
is how to calculate the sum of traffic demands. Although several
works on routing algorithms [28,29] have been proposed, we adopt
XY-routing in this paper for simplicity. In scenario one and sce-
nario two, we evaluate the performance with different network
sizes that include 16 processer cores (4 × 4 mesh), 36 processer
cores (6 × 6 mesh), 64 processer cores (8 × 8 mesh) respectively,
and with different traffic demands of virtual machines and the in-
terdependencies among them. The traffic demands of virtual ma-
chines subject to the normal distribution N (0.2, 0.1), N (0.4, 0.1),

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013

6 X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]
Table 1
Execution time of ant colony placement.

Traffic model Topology Variation Execution time(ms)
Global 4 × 4 0 .2 18 .051

0 .4 18 .055
0 .6 18 .885

Global 6 × 6 0 .2 115 .43
0 .4 118 .55
0 .6 119 .53

Global 8 × 8 0 .2 516 .82
0 .4 525 .53
0 .6 528 .02

Partioned 4 × 4 0 .2 15 .59
0 .4 15 .83
0 .6 17 .12

Partitioned 6 × 6 0 .2 118 .05
0 .4 118 .20
0 .6 118 .56

Partitioned 8 × 8 0 .2 564 .48
0 .4 565 .41
0 .6 566 .43

N (0.6, 0.1) with the unit of MB/S [30] . In scenario three, we intro-
duce the trace-based network traffic models which have been col-
lected from execution of applications to show that our algorithm
still has better performance for on-chip virtual machine placement
[31] . In addition, computation time is also an essential metric to
evaluate. Since the similarity of network scales, we only test the
computation time in Scenario one which can prove the efficiency
of our algorithm.
6.1. Scenario one: performance comparisons with different traffic
models

In this scenario, we compare 1) global traffic model in which
each virtual machine communicates with each other at a constant
rate, 2) partitioned traffic model in which the virtual machines are
divided into isolated partitions, and only virtual machines within
the same partition will communicate with each other. The energy
consumption of transmitting a bit of data through a router and a
link is 4.171nJ and 0.449nJ, respectively according to [21] . The ob-
jective value we calculated is used to show the differences, the
smaller objective value indicates the better performance. Traffic
demands of virtual machines meet the normal distribution func-
tion with different parameters (mean and variance value) that
mentioned above. Since all of the virtual machines have connec-
tions with each other in global traffic model, the number of appli-
cation can be seen as only one. Meanwhile, the number of appli-
cations is generated randomly in partitioned traffic model, which
the minimum number of applications is set to 2. In each case,
the number of virtual machines equals to the number of processer
cores. The time simulation results are depicted in Table 1 .

Fig. 2 shows the comparison results, where X axis stands for the
mean traffic from each virtual machine. For example, 0.2 means
that communication traffic between virtual machines obeys the
normal distribution with 0.2 as mean value, and 0.1 represents
variance value. In the figure, each bar indicates that the objective
values calculated by three algorithms. According to Fig. 2 (a) (c) (e),
under the global traffic model, the objective function values pro-
vided by improved ant colony placement are about average 3.2%
and 1.9% smaller than those of the other two algorithms. In other
words, if a chip is devoted to just one application with homoge-
neous traffic rates among virtual machines, the objective values
obtain few discrepancies among three algorithms. Since all virtual
machines transfer traffic to each other, the location is not the main
impact factor to objective values. In addition, with the network
scale expansion, the improvements are less for the range of feasi-

ble solution increasing. That causes the improved ant colony algo-
rithm needs more iterations to search for the approximate optimal
solution. Fig. 2 (b) (d) (f) compares the performance of three place-
ment algorithms with different network scale under partitioned
traffic model. We have three groups for each test. The results indi-
cate the same trends as those under global traffic model, with the
performance improvement potential being even more prominent.
Ant colony algorithm can provide average 47% and 42% improve-
ment than random placement and FFD placement. This can be at-
tributed to that improved ant colony algorithm has much higher
global searching ability.

As it can be observed, computation time is required to search
for the placement. The computation complexity is closely related
to the scale of NoC, i.e., the number of nodes in the network. As
expected, the computation complexity represented by the run time
in Table 1 increases as the scale of NoC increases. And the max
computation time is less than 1 second. This confirms the effi-
ciency of the proposed algorithm even for large scale NoCs.
6.2. Scenario two: performance comparisons with different number of
the utilized cores

In this scenario, we compare the performance of three algo-
rithms with different numbers of the utilized cores [30] . The num-
ber of the cores in the higher utilization is followed uniform distri-
bution which the scale is from three quarters number of the cores
to the whole number of the cores. And The number of the cores
in the lower utilization will use half or one quarter number of
the cores randomly. The traffic model is adopted partitioned traf-
fic model. Similar to the scenario one, the objective value is used
to show the differences. And The interdependencies among appli-
cations are also varying randomly which the minimum number of
applications is set to 2.

Fig. 3 (a) (c) (e) shows the performance of three algorithms
where all the processer cores are higher utilized and Fig. 3 (b) (d)
(f) displays the performance of three algorithms are lower uti-
lized. We can see that, 1) the performance of improved ant colony
placement provides about average 66.27% and 47.53% improvement
compared with the other two algorithms. Since our placement al-
gorithm takes into account of the dependencies of applications or
communication requiring frequency, it can greatly reduce the total
energy consumption for the placements. In addition, the improved
ant colony placement produces the lowest energy consumption be-
cause it is able to search the solution space more efficiently and
globally. Thus, it can find solutions with lower energy consumption
compared with random and FFD. 2) The energy consumption of
FFD is between those of the other two. The reason is that FFD can
find local optimal solutions in iteration which may cause global so-
lution degradation.
6.3. Scenario three: performance comparisons with trace-based traffic
model

In this scenario, we compare the performance of three place-
ment algorithms with trace-based network traffic model. The set
of on-chip network traffic traces is collected from the PARSEC v2.1
benchmark suite [32] . The PARSEC suite contains multiple input
sets for each benchmark, and we collect traces for all the bench-
marks that work with simulations up to 64 cores. The iteration in
this scenario is 150.

Fig. 4 plots Objective values of three algorithms under different
application traffic models on 8 × 8 mesh architecture. It can be
seen that the improved ant colony algorithm provides better per-
formance than those of the other two algorithms. However, under
traffic models swaptions and bodytrack, the iteration is set to 250
in order to obtain the better performance of our algorithm than

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013

X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11 7
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]

0.2 0.4 0.6
0

100

200

300

400

500

600

700

800
A

ve
ra

ge
 P

ow
er

(m
W

)

Traffic demand
(a)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

20

40

60

80

100

120

140

160

A
ve

ra
ge

 P
ow

er
(m

W
)

Traffic demand
(b)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

1000

2000

3000

4000

5000

6000

A
ve

ra
ge

 P
ow

er
(m

W
)

Traffic demand
(c)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

200

400

600

800

1000

1200

1400
A

ve
ra

ge
 P

ow
er

(m
W

)

Traffic demand
(d)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

5000

10000

15000

20000

25000

A
ve

ra
ge

 P
ow

er
(m

W
)

Traffic demand
(e)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

1000

2000

3000

4000

5000

6000

A
ve

ra
ge

 P
ow

er
(m

W
)

Traffic demand
(f)

random placement
FFD placement
ant colony placement

Fig. 2. Objective value of three algorithms (global traffic model and partitioned traffic model with different traffic variance) (a) 4 × 4 mesh, global traffic model; (b) 4 ×
4 mesh, partitioned traffic model; (c) 6 × 6 mesh, global traffic model; (d) 6 × 6 mesh, partitioned traffic model; (e) 8 × 8 mesh, global traffic model; (f) 8 × 8 mesh,
partitioned traffic model.
Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013

8 X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]

0.2 0.4 0.6
0

25

50

75

100

125

150

)
W

m(re
wo

P
egarev

A

Traffic demand
(a)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 P
ow

er
(m

W
)

Traffic demand
(b)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

1000

2000

3000

4000

5000

)
W

m(re
wo

P
egarev

A

Traffic demand
(e)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

 P
ow

er
(m

W
)

Traffic demand
(f)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

200

400

600

800

1000

1200

)
W

m(re
wo

P
egarev

A

Traffic demand
(c)

random placement
FFD placement
ant colony placement

0.2 0.4 0.6
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 P
ow

er
(m

W
)

Traffic demand
(d)

random placement
FFD placement
ant colony placement

Fig. 3. Objective value of three algorithms (different number of the utilized cores under partitioned traffic model with different traffic variance) (a) 4 × 4 mesh, higher
utilization; (b) 4 × 4 mesh, lower utilization; (c) 6 × 6 mesh, higher utilization; (d) 6 × 6 mesh, lower utilization; (e) 8 × 8 mesh, higher utilization; (f) 8 × 8 mesh, lower
utilization.
that of FFD algorithm. Analyzing the traffic matrices of these two
application traffic models, it can be seen that there are some traf-
fic rates which are much higher than the others in traffic matrices.
This means that, by using FFD algorithm, these virtual machines
with higher traffic rates will be placed first which can reduce the

total traffic on chip so as to the energy consumption. While, for
our improved ant colony algorithm, these special points in traffic
matrices will cause more iterations to search for the approximate
optimal solution.

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013

X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11 9
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]

vips

swaptions

fluidanimate
ferret

blackscholes

bodytra
ck

dedup
x264

canneal

0

1000

2000

3000

4000

5000

6000

)
W

m(re
wo

P
egarev

A

Application model traffic

random placement
FFD placement
ant colony placement

Fig. 4. Objective value of three algorithms under different application traffic models.
7. Conclusion

This paper proposes an energy-aware on chip virtual ma-
chine placement with NoC architecture for cloud-supported Cyber-
Physical Systems. Our primary aim is to reduce the energy con-
sumption that is generated by traffic communications among dif-
ferent virtual machines. We formulate the virtual machine place-
ment algorithm as an optimization problem and derive the de-
tailed energy model. We design an improved ant colony algorithm
based on the characteristic of NoC architecture, which efficiently
improves the energy efficiency of virtual machine communication.
Compared with traditional random placement and FFD placement
schemes, the simulation results show that our algorithm performs
better with different traffic models and network sizes. For the fu-
ture work, we are planning to consider the multi-cores virtual ma-
chines placement on chip. And it is more realistic and also very
important to improve the algorithm after evaluating the system
performance.
Acknowledgment

This work was supported by the National Science Foundation
of China Grant No. 61472300 , the Fundamental Research Funds for
the Central Universities Grant No. JB150318, the 111 Project Grant
No. B08038, and the Research Funds of the Science and Technology
on Information Transmission and Dissemination in Communication
Networks Laboratory.
References

[1] J. Wan , M. Chen , F. Xia , D. Li , K. Zhou , From machine-to-machine communi-
cations towards cyber-physical systems, Comput. Sci. Inform. Syst. 10 (2013)
1105C1128 .

[2] L. Ordinez , O. Alimenti , E. Rinland , M. Gmez , J. Marchetti , Modeling and spec-
ifying requirements for cyber-physical systems, in: Proceedings of IEEE Latin
America Transactions, 2013, pp. 625–632 .

[3] A. Masrur , M. Kit , V. Matna , T. Bures , W. Hardt , Component-based design of cy-
ber-physical applications with safety-critical requirements, Microprocess. Mi-
crosy. 42 (2016) 70–86 .

[4] Y. Gao , H. Guan , Z. Qi , Y. Hou , L. Liu , A multi-objective ant colony system algo-
rithm for virtual machine placement in cloud computing, J. Comput. Syst. Sci.
79 (2013) 1230–1242 .

[5] K. Zheng , X. Wang , L. Li , X. Wang , Joint power optimization of data center
network and servers with correlation analysis, in: Proceeding of the IEEE In-
ternational Conference on Computer Communications (INFOCOM), IEEE, 2014,
pp. 2598–2606 .

[6] J.M. Ye , M. Cao , Z. Qu , T. Chen , Regional cache organization for noc based
many-core processors, J. Comput. Syst. Sci. 79 (2013) 175–186 .

[7] C. Batten , A. Joshi , V. Stojanovc , K. Asanovic , Designing chip-level nanopho-
tonic interconnection networks, Integrated Optical Interconnect Architectures
for Embedded Systems, Springer, 2013, pp. 81–135 .

[8] Y. Feng , B. Li , B. Li , Bargaining towards maximized resource utilization in
video streaming datacenters, in: Proceeding of the IEEE International Con-
ference on Computer Communications (INFOCOM), IEEE, 2012, pp. 1134–
1142 .

[9] B. Grot , J. Hestness , S.W. Keckler , O. Mutlu , Kilo-NOC: a heterogeneous net-
work-on-chip architecture for scalability and service guarantees, ACM SIGARCH
Comput. Archit. News 39 (2011) 401–412 .

[10] Y. Hu , X. Long , J. Zhang , J. He , L. Xia , I/O scheduling model of virtual machine
based on multi-core dynamic partitioning, in: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, ACM,
2010, pp. 142–154 .

[11] A . Kanduri , A .M. Rahmani , P. Liljeberg , H. Tenhunen , Predictable application
mapping for manycore real-time and cyber-physical systems, in: Proceedings
of the 9th IEEE International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), IEEE, 2015, pp. 135–142 .

[12] B. Speitkamp , M. Bichler , A mathematical programming approach for server
consolidation problems in virtualized data centers, IEEE Trans. Serv. Comput. 3
(2010) 266–278 .

[13] Y. Wang , X. Wang , Y. Chen , Energy-efficient virtual machine scheduling in
performance-asymmetric multi-core architectures, in: Proceedings of the 8th
International Conference on Network and Service Management, International
Federation for Information Processing, 2012, pp. 288–294 .

[14] S. Chaisiri , B.-S. Lee , D. Niyato , Optimal virtual machine placement across mul-
tiple cloud providers, in: Proceedings of the IEEE Asia-Pacific Services Comput-
ing Conference, IEEE, 2009, pp. 103–110 .

[15] Y. Zhang , N. Ansari , Heterogeneity aware dominant resource assistant heuris-
tics for virtual machine consolidation, in: Proceedings of the IEEE Global Com-
munications Conference (GLOBECOM), IEEE, 2013, pp. 1297–1302 .

[16] J. Xu , J.A. Fortes , Multi-objective virtual machine placement in virtualized
data center environments, in: Proceedings of the IEEE/ACM International Con-
ference on Green Computing and Communications & IEEE/ACM International
Conference on Cyber, Physical and Social Computing, IEEE, 2010, pp. 179–188 .

[17] X. Liu , Z. Zhan , K. Du , W. Chen , Energy aware virtual machine placement
scheduling in cloud computing based on ant colony optimization approach, in:
Proceedings of the 2014 conference on Genetic and evolutionary computation,
ACM, 2014, pp. 41–48 .

[18] M. Arjomand , H. Sarbazi-Azad , Power-performance analysis of network-
s-on-chip with arbitrary buffer allocation schemes, IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 29 (2010) 1558–1571 .

[19] A.M. Rahmani , P. Liljeberg , K. Latif , J. Plosila , K.R. Vaddina , H. Tenhunen , Con-
gestion aware, fault tolerant, and thermally efficient inter-layer communication
scheme for hybrid noc-bus 3D architectures, in: Proceedings of 5th IEEE/ACM
International Symposium on Networks on Chip (NoCS), IEEE, 2011, pp. 65–72 .

[20] M. Geyong , M. Ould-Khaoua , A performance model for wormhole-switched
interconnection networks under self-similar traffic, IEEE Trans. Comput. 53
(2004) 601–613 .

[21] C. Wu , C. Deng , L. Liu , J. Han , J. Chen , S. Yin , S. Wei , An efficient applica-
tion mapping approach for the co-optimization of reliability, energy, and per-
formance in reconfigurable noc architectures, IEEE Trans. Comput. Aid. D. 34
(2015) 1264–1277 .

[22] C. Lin , G. Wu , F. Xia , M. Li , L. Yao , Z. Pei , Energy efficient ant colony algo-
rithms for data aggregation in wireless sensor networks, J. Comput. Syst. Sci.
78 (2012) 1686–1702 .

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0022
http://dx.doi.org/10.1016/j.micpro.2016.07.013

10 X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]
[23] G. Huang , X. Cao , X. Wang , An ant colony optimization algorithm based on

pheromone diffusion, ACTA ELECTRONICA SINICA. 32 (2004) 865–868 .
[24] Y. Fares , P.J. Sharpe , C.E. Magnuson , Pheromone dispersion in forests, J. Theor.

Biol. 84 (1980) 335–359 .
[25] M. Dorigo , L.M. Gambardella , M. Middendorf , T. Stutzle , Guest editorial: spe-

cial section on ant colony optimization, IEEE Trans. Evolut. Comput. 6 (2002)
317–319 .

[26] D. Xu , J. Fan , X. Jia , S. Zhang , X. Wang , Hamiltonian properties of honeycomb
meshes, Inform. Sciences 240 (2013) 184–190 .

[27] X. Wang , J. Fan , X. Jia , S. Zhang , J. Yu , Embedding meshes into twisted-cubes,
Inform. Sciences 181 (2011) 3085–3099 .

[28] D. Xiang , K. Chakrabarty , H. Fujiwara , Multicast-based testing and ther-
mal-aware test scheduling for 3D ICs with a stacked network-on-chip, IEEE
Trans. Comput. (2015) .

[29] Z. Chen , K. Chakrabarty , D. Xiang , MVP: Minimum-violations partitioning for
reducing capture power in at-speed delay-fault testing, IEEE Trans. on Com-
puter-Aided Design 30 (2011) 1762–1767 .

[30] X. Meng , V. Pappas , L. Zhang , Improving the scalability of data center networks
with traffic-aware virtual machine placement, in: Proceeding of the IEEE In-
ternational Conference on Computer Communications (INFOCOM), IEEE, 2010,
pp. 1–9 .

[31] J. Hestness , B. Grot , S.W. Keckler , Netrace: dependency-driven trace-based net-
work-on-chip simulation, in: Proceedings of the 3rd International Workshop
on Network on Chip Architectures, ACM, 2010, pp. 31–36 .

[32] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, S.W. Keckler, Running PARSEC 2.1 on
M5. university of texas at austin, department of computer science„ Technical
Report# TR-09-32, 2009.

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30096-5/sbref0031
http://dx.doi.org/10.1016/j.micpro.2016.07.013

X. Liu et al. / Microprocessors and Microsystems 0 0 0 (2016) 1–11 11
ARTICLE IN PRESS

JID: MICPRO [m5G; July 22, 2016;15:23]
Xuanzhang Liu is a postgraduate student in School of Telecommunications Engineering, Xidian University, China. In 2012, He received his B.S. from
Yunnan University, China. The main research interests include: virtual machine placement in Data Center network and virtual machine placement
optimization aimed at NoC-based platform.

Gu Huaxi received the B.E. degree, M.E. and PhD in Telecommunication Engineering and Telecommunication and Information Systems from Xidian
University, Xidian in 20 0 0, 20 03 and 20 05 respectively. He is full Professor in the State key lab of ISN, Telecommunication Department, Xidian Uni-
versity, Xidian, China. His current interests include interconnection networks, networks on chip and optical intrachip communication. He has more
than 100 publications in refereed journals and conferences. He has been working as a reviewer of IEEE Transaction on Computer, IEEE Transactions
on Dependable and Secure Computing, IEEE system Journal, IEEE Communication letters, Information Sciences, Journal of Supercomputing, Journal
of System Architecture, Journal of Parallel and Distributed Computing, Microprocessors and Microsystems etc.

Haibo Zhang received the MSc degree in Computer Science from Shandong Normal University, China in 2005, and the PhD degree in Computer
Science from the University of Adelaide, Australia in 20 09. From 20 09 to 2010, he was a postdoctoral research associate at Automatic Control Labo-
ratory, KTH, Sweden. Currently he is a lecturer at Computer Science department of University of Otago, New Zealand. His research interests include
real-time industrial wireless communications, wireless sensor/ad hoc networks, delay-tolerant networks, green computing, distributed algorithms
and protocol design.

Feiyang Liu is a PhD candidate from Department of Computer Science, University of Otago, New Zealand. He obtained B.S. and M.S. degrees from
Xidian University, China in 2009 and 2012, respectively. His research interests include Network on Chip (NoC), Optical Network on Chip (ONoC),
Wireless Sensor Network (WSN), etc.

Yawen Chen obtained her PhD degree in Computer Science from The University of Adelaide in Australia in 2008. Before her PhD study, she received
Bachelor degree in Computer Science in 2002 and Master degree in 2004 from Shandong Normal University in China, and then worked as a
researcher in Japan Advanced Institute of Science and Technology (JAIST) in 2005. After her PhD study, she worked as postdoctoral researcher at
Royal Institute of Technology (KTH) in 2009. She has been a Lecturer in the University of Otago in New Zealand since 2011. Her research interests
include resource optimization and performance evaluation in computer networking and computer architecture (optical networks, interconnection
networks, green computing, and etc).

Xiaoshang Yu received the M.E. degree in Electronics and Communications Engineering from Xidian University in 2013. Now he is doing the Ph.D.
Programme in Telecommunication and information system in the State key lab of ISN, Xidian University. His main research interests are related to
optical interconnected networks, data center networks.

Please cite this article as: X. Liu et al., Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems,
Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.07.013

http://dx.doi.org/10.1016/j.micpro.2016.07.013

